TRICOT encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in Lotus japonicus.
نویسندگان
چکیده
During the course of evolution, mainly leguminous plants have acquired the ability to form de novo structures called root nodules. Recent studies on the autoregulation and hormonal controls of nodulation have identified key mechanisms and also indicated a possible link to other developmental processes, such as the formation of the shoot apical meristem (SAM). However, our understanding of nodulation is still limited by the low number of nodulation-related genes that have been identified. Here, we show that the induced mutation tricot (tco) can suppress the activity of spontaneous nodule formation 2, a gain-of-function mutation of the cytokinin receptor in Lotus japonicus. Our analyses of tco mutant plants demonstrate that TCO positively regulates rhizobial infection and nodule organogenesis. Defects in auxin regulation are also observed during nodule development in tco mutants. In addition to its role in nodulation, TCO is involved in the maintenance of the SAM. The TCO gene was isolated by a map-based cloning approach and found to encode a putative glutamate carboxypeptidase with greatest similarity to Arabidopsis ALTERED MERISTEM PROGRAM 1, which is involved in cell proliferation in the SAM. Taken together, our analyses have not only identified a novel gene for regulation of nodule organogenesis but also provide significant additional evidence for a common genetic regulatory mechanism in nodulation and SAM formation. These new data will contribute further to our understanding of the evolution and genetic basis of nodulation.
منابع مشابه
The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus.
In legumes, the number of symbiotic root nodules is controlled by long-distance communication between the shoot and the root. Mutants defective in this feedback mechanism exhibit a hypernodulating phenotype. Here, we report the identification of a novel leucine-rich repeat receptor-like kinase (LRR-RLK), KLAVIER (KLV), which mediates the systemic negative regulation of nodulation in Lotus japon...
متن کاملThe Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase.
Arabidopsis amp1 mutants show pleiotropic phenotypes, including altered shoot apical meristems, increased cell proliferation, polycotyly, constitutive photomorphogenesis, early flowering time, increased levels of endogenous cytokinin, and increased cyclin cycD3 expression. We have isolated the AMP1 gene by map-based cloning. The AMP1 cDNA encodes a 706;-amino acid polypeptide with significant s...
متن کاملExpression and functional analysis of a CLV3-like gene in the model legume Lotus japonicus.
Plant aerial parts are differentiated from stem cells that are located in the shoot apical meristem (SAM). CLAVATA3 (CLV3)-CLV1 is a well-known ligand-receptor pair, which functions in SAM maintenance. In Lotus japonicus, HYPERNODULATION ABERRANT ROOT FORMATION1 (HAR1) shows the highest similarity with CLV1 of all Arabidopsis receptor-like kinases (RLKs). However, HAR1 functions in the systemic...
متن کاملThe temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia.
The brush mutant of Lotus japonicus exhibits a temperature-dependent impairment in nodule, root, and shoot development. At 26 degrees C, brush formed fewer nodules, most of which were not colonized by rhizobia bacteria. Primary root growth was retarded and the anatomy of the brush root apical meristem revealed distorted cellular organization and reduced cell expansion. Reciprocal grafting of br...
متن کاملALTERED MERISTEM PROGRAM1 suppresses ectopic stem cell niche formation in the shoot apical meristem in a largely cytokinin-independent manner.
Plants are able to reiteratively form new organs in an environmentally adaptive manner during postembryonic development. Organ formation in plants is dependent on stem cell niches (SCNs), which are located in the so-called meristems. Meristems show a functional zonation along the apical-basal axis and the radial axis. Shoot apical meristems of higher plants are dome-like structures, which conta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 140 2 شماره
صفحات -
تاریخ انتشار 2013